Non-Pharmaceutical Interventions (NPIs), such as social gathering restrictions, have shown effectiveness to slow the transmission of COVID-19 by reducing the contact of people. To support policy-makers, multiple studies have first modeled human mobility via macro indicators (e.g., average daily travel distance) and then studied the effectiveness of NPIs. In this work, we focus on mobility modeling and, from a micro perspective, aim to predict locations that will be visited by COVID-19 cases. Since NPIs generally cause economic and societal loss, such a micro perspective prediction benefits governments when they design and evaluate them. However, in real-world situations, strict privacy data protection regulations result in severe data sparsity problems (i.e., limited case and location information). To address these challenges, we formulate the micro perspective mobility modeling into computing the relevance score between a diffusion and a location, conditional on a geometric graph. we propose a model named Deep Graph Diffusion Infomax (DGDI), which jointly models variables including a geometric graph, a set of diffusions and a set of locations.To facilitate the research of COVID-19 prediction, we present two benchmarks that contain geometric graphs and location histories of COVID-19 cases. Extensive experiments on the two benchmarks show that DGDI significantly outperforms other competing methods.
translated by 谷歌翻译
Graph neural networks (GNNs) are popular weapons for modeling relational data. Existing GNNs are not specified for attribute-incomplete graphs, making missing attribute imputation a burning issue. Until recently, many works notice that GNNs are coupled with spectral concentration, which means the spectrum obtained by GNNs concentrates on a local part in spectral domain, e.g., low-frequency due to oversmoothing issue. As a consequence, GNNs may be seriously flawed for reconstructing graph attributes as graph spectral concentration tends to cause a low imputation precision. In this work, we present a regularized graph autoencoder for graph attribute imputation, named MEGAE, which aims at mitigating spectral concentration problem by maximizing the graph spectral entropy. Notably, we first present the method for estimating graph spectral entropy without the eigen-decomposition of Laplacian matrix and provide the theoretical upper error bound. A maximum entropy regularization then acts in the latent space, which directly increases the graph spectral entropy. Extensive experiments show that MEGAE outperforms all the other state-of-the-art imputation methods on a variety of benchmark datasets.
translated by 谷歌翻译
图表自我监督学习已被极大地用于从未标记的图表中学习表示形式。现有方法可以大致分为预测性学习和对比度学习,在这种学习中,后者通过更好的经验表现吸引了更多的研究注意力。我们认为,与对比模型相比,具有潜在增强和强大的解码器武器的预测模型可以实现可比较甚至更好的表示能力。在这项工作中,我们将数据增强引入潜在空间,以进行卓越的概括和提高效率。一个名为Wiener Graph DeonStolutional网络的新型图解码器相应地设计为从增强潜伏表示的信息重建。理论分析证明了图形滤波器的出色重建能力。各种数据集的广泛实验结果证明了我们方法的有效性。
translated by 谷歌翻译